11 классификация генераторов по способу возбуждения особенности этих генераторов
КЛАССИФИКАЦИЯ ГЕНЕРАТОРОВ ПОСТОЯННОГО ТОКА
Классификация генераторов постоянного тока производится по способу их возбуждения. Они подразделяются на генераторы с независимым возбуждением и самовозбуждением.
Генераторы первого типа выполняются с электромагнитным и магнитоэлектрическим возбуждением. В генераторах с электромагнитным возбуждением обмотка возбуждения, располагаемая на главных полюсах, подключается к независимому источнику питания (рис. 1, а). Ток в цепи возбуждения Iв может изменяться в широких пределах с помощью переменного резистора Ra. Мощность, потребляемая обмоткой возбуждения, невелика и в номинальном режиме составляет 1-5 % номинальной мощности якоря генератора. Обычно процентное значение мощности возбуждения уменьшается с возрастанием номинальной мощности машины.
Генераторы с магнитоэлектрическим возбуждением возбуждаются постоянными магнитами, из которых изготовляются полюсы машины. С таким видом возбуждения выполняются генераторы относительно небольшой мощности, которые применяются в специальных случаях. Недостатком генераторов с магнитоэлектрическим возбуждением является трудность регулирования напряжения.
У генераторов с самовозбуждением обмотка возбуждения получает питание от собственного якоря. В зависимости от способа ее включения генераторы с самовозбуждением подразделяются на генераторы с параллельным, последовательным и смешанным возбуждением.
Схема соединения генератора параллельного возбуждения показана на рис. 1,б. Переменный резистор RB дает возможность изменять ток возбуждения Iв и, следовательно, выходное напряжение. Ток якоря Ia у этого генератора равен Ia = I + Iв, где I — ток нагрузки. Ток возбуждения относительно мал и для номинального режима составляет 1-5 % номинального тока машины.
У генератора последовательного возбуждения обмотка возбуждения соединяется последовательно с якорем и ее ток возбуждения равен току якоря и току нагрузки: Iв = Ia =I (рис. 1, в).
У генераторов смешанного возбуждения (рис. 1, г) на полюсах размещаются две обмотки. Одна из них, имеющая большое число витков и выполненная из проводников относительно небольшого сечения, включается параллельно с якорем, а другая обмотка с малым числом витков из проводников большого сечения включается последовательно с якорем. Ток якоря такого генератора равен Ia = I + Iв.
У этих генераторов параллельная и последовательная обмотки могут быть включены согласно (МДС этих обмоток направлены одинаково) и встречно (их МДС направлены противоположно). В зависимости от этого различаются генераторы смешанного согласного включения и генераторы смешанного встречного включения. Обычно в генераторах смешанного возбуждения основная часть МДС возбуждения создается параллельной обмоткой. Генераторы параллельного, последовательного и смешанного возбуждения иногда называют соответственно генераторами шунтового, сериесного и компаундного возбуждения.
Читайте также: Генератор для мерседес 814
Согласно ГОСТ 183-74 для машин постоянного тока принято следующее обозначение выводов обмоток: обмотки якоря Я1-Я2, параллельной обмотки возбуждения Ш1—Ш2, последовательной обмотки возбуждения С1—С2, обмотки дополнительных полюсов Д1—Д2, компенсационной обмотки К1-К2. Цифра 1 обозначает начало, а 2 — конец обмотки.
Классификация генераторов по способу возбуждения
В зависимости от способа возбуждения основного магнитного поля машины различают генераторы с независимым, параллельным, последовательным и смешанным возбуждением.
Генератор, обмотка возбуждения которого получает питание от постороннего источника тока (например, от аккумуляторной батареи или от другого генератора постоянного тока), называется генератором с независимым возбуждением (рис. 5-41,а).
Генератор с параллельным возбуждением имеет обмотку возбуждения, подключенную параллельно к якорю (рис. 5-41,б). В генераторе последовательного возбуждения обмотка возбуждения соединена последовательно с якорем (рис. 5-41,в).
В генераторе со смешанным возбуждением на главных полюсах помещаются две обмотки: одна из них соединяется параллельно, другая — последовательно с якорем (рис. 5-41,г).
Рис. 5-41. Генераторы постоянного тока.
По параллельной обмотке возбуждения проходит небольшой ток, составляющий 1—5% номинального тока якоря. Она выполняется обычно с большим числом витков из проводника относительно небольшого сечения. По последовательной обмотке возбуждения проходит полный ток якоря, поэтому она выполняется с небольшим числом витков из проводника относительного большого сечения.
Генераторы малой мощности выполняются иногда с постоянными магнитами; их можно назвать магнито-электрическими. По свойствам они приближаются к генераторам с независимым возбуждением.
На щитке машины указываются номинальные величины: мощность (электрическая мощность на зажимах для генератора или мощность на валу для двигателя в ваттах или киловаттах), напряжение, ток, скорость вращения.
А) Классификация генераторов по способу возбуждения.
В зависимости от способа возбуждения основного магнитного поля машины различают генераторы с независимым, параллельным, последовательным и смешанным возбуждением.
Читайте также: Дизельный генератор 1987 года
Генератор, обмотка возбуждения которого получает питание от постороннего источника тока (например, от аккумуляторной батареи или от другого генератора постоянного тока), называется генератором с независимым возбуждением (рис. 5-41,а).
Генератор с параллельным возбуждением имеет обмотку возбуждения, подключенную параллельно к якорю (рис. 5-41,б). В генераторе последовательного возбуждения обмотка возбуждения соединена последовательно с якорем (рис. 5-41,в).
В генераторе со смешанным возбуждением на главных полюсах помещаются две обмотки: одна из них соединяется параллельно, другая — последовательно с якорем (рис. 5-41,г).
Рис. 5-41. Генераторы постоянного тока.
По параллельной обмотке возбуждения проходит небольшой ток, составляющий 1—5% номинального тока якоря. Она выполняется обычно с большим числом витков из проводника относительно небольшого сечения. По последовательной обмотке возбуждения проходит полный ток якоря, поэтому она выполняется с небольшим числом витков из проводника относительного большого сечения.
Генераторы малой мощности выполняются иногда с постоянными магнитами; их можно назвать магнито-электрическими. По свойствам они приближаются к генераторам с независимым возбуждением.
На щитке машины указываются номинальные величины: мощность (электрическая мощность на зажимах для генератора или мощность на валу для двигателя в ваттах или киловаттах), напряжение, ток, скорость вращения.
Дата добавления: 2015-06-12 ; просмотров: 2098 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ
38 Генераторы с внешним возбуждением
Генератор (от лат. – производитель) – устройство, преобразующее энергию источника питания в энергию электрических колебаний требуемой формы, частоты и мощности.
7.1 Классификация генераторов
1) По способу возбуждения различают генераторы с внешним возбуждением (ГВВ) и автогенераторы (АГ).
2) По форме генерируемых колебаний различают АГ гармонических и негармонических (релаксационных или импульсных) колебаний.
3) По частоте генерируемых колебаний различают инфранизкочастотные (менее 10 Гц), низкочастотные (от 10 Гц до 100 кГц), высокочастотные (от 100 кГц до 100 МГц) и сверхвысокочастотные (свыше 100 МГц) генераторы.
Читайте также: Неисправности генератора ваз 2107 с инжектором
4) По выходной мощности различают маломощные (менее 1 Вт), средней мощности (ниже 100 Вт) и мощные (свыше 100 Вт) генераторы.
6) По виду частотно-избирательной цепи различают генераторы -,
— и
-типа.
9) По способу подключения нагрузки (по числу точек, в которых колебательный контур соединен с активным элементом) различают двухточечные и трехточечные генераторы.
Использование ГВВ для умножения частоты
Умножение частоты – получение из гармонического колебания с частотой другого гармонического колебания с частотой
, где
— целое положительное число.
Умножение частоты включает две операции:
1) Формирование из исходного гармонического колебания колебания сложной формы. Выполняется при помощи НЭ.
2) Выделение из спектра частот полученного колебания нужной гармоники. Выполняется с помощью фильтра.
Умножение частоты технически реализуется тремя способами: методом отсечки, импульсным методом и радиоимпульсным методом.
— высокодобротные колебательные контуры, настроенные на частоту входного гармонического колебания
и частоту выделяемой гармоники
. При уверенности, что на входе – гармоническое колебание, контур
может отсутствовать;
— НЭ;
— источник коллекторного питания;
— источник напряжения смещения. Обеспечивает требуемое положение рабочей точки (РТ) на проходной характеристике
.
,
где — постоянная составляющая выходного тока;
— амплитуда
-ой гармоники выходного тока;
— амплитуда импульсов выходного тока;
— крутизна ВАХ;
— угол отсечки;
— оптимальный угол отсечки – угол, при котором нужная (
-ая) гармоника выходного тока имеет максимальную амплитуду.
7.4 Импульсный метод
Ф – формирователь коротких прямоугольных импульсов ();
7.5 Радиоимпульсный метод
Рисунок 7.4 – Структурная схема умножителя частоты:
Г1 – импульсный генератор. Управляет (манипулирует) Г2;
Г2 – генератор, формирующий радиоимпульсы с прямоугольной огибающей.
Чтобы гармоника нужной частоты имела наибольшую амплитуду, нужно выполнить условие:
,
- Свежие записи
- Как я ремонтировала свой автомобиль
- Автомобильные зеркала
- Ностальгия по «бугатти»
- Тест драйв. OPEL MOKKA – лучший полноприводный кроссовер в своем классе
- McFarlan — от рассвета до заката
- Правообладателям
- Политика конфиденциальности
Записки Автомастера © 2023
Информация, опубликованная на сайте, носит исключительно ознакомительный характер
источники:https://dmsht.ru/11-klassifikatsiya-generatorov-po-sposobu-vozbuzhdeniya-osobennosti-etih-generatorov