11 классификация генераторов по способу возбуждения особенности этих генераторов

11 классификация генераторов по способу возбуждения особенности этих генераторов

КЛАССИФИКАЦИЯ ГЕНЕРАТОРОВ ПОСТОЯННОГО ТОКА

Классификация генераторов постоянного тока производится по способу их возбуждения. Они подразделяются на генераторы с независимым возбуждением и самовозбуждением.

Генераторы первого типа выполняются с электромагнитным и магнитоэлектрическим возбуждением. В генераторах с электромагнитным возбуждением обмотка возбуждения, располагаемая на главных полюсах, подключается к независимому источнику питания (рис. 1, а). Ток в цепи возбуждения Iв может изменяться в широких пределах с помощью переменного резистора Ra. Мощность, потребляемая обмоткой возбуждения, невелика и в номинальном режиме составляет 1-5 % номинальной мощности якоря генератора. Обычно процентное значение мощности возбуждения уменьшается с возрастанием номинальной мощности машины.

Генераторы с магнитоэлектрическим возбуждением возбуждаются постоянными магнитами, из которых изготовляются полюсы машины. С таким видом возбуждения выполняются генераторы относительно небольшой мощности, которые применяются в специальных случаях. Недостатком генераторов с магнитоэлектрическим возбуждением является трудность регулирования напряжения.

У генераторов с самовозбуждением обмотка возбуждения получает питание от собственного якоря. В зависимости от способа ее включения генераторы с самовозбуждением подразделяются на генераторы с параллельным, последовательным и смешанным возбуждением.

Схема соединения генератора параллельного возбуждения показана на рис. 1,б. Переменный резистор RB дает возможность изменять ток возбуждения Iв и, следовательно, выходное напряжение. Ток якоря Ia у этого генератора равен Ia = I + Iв, где I — ток нагрузки. Ток возбуждения относительно мал и для номинального режима составляет 1-5 % номинального тока машины.

У генератора последовательного возбуждения обмотка возбуждения соединяется последовательно с якорем и ее ток возбуждения равен току якоря и току нагрузки: Iв = Ia =I (рис. 1, в).

У генераторов смешанного возбуждения (рис. 1, г) на полюсах размещаются две обмотки. Одна из них, имеющая большое число витков и выполненная из проводников относительно небольшого сечения, включается параллельно с якорем, а другая обмотка с малым числом витков из проводников большого сечения включается последовательно с якорем. Ток якоря такого генератора равен Ia = I + Iв.

У этих генераторов параллельная и последовательная обмотки могут быть включены согласно (МДС этих обмоток направлены одинаково) и встречно (их МДС направлены противоположно). В зависимости от этого различаются генераторы смешанного согласного включения и генераторы смешанного встречного включения. Обычно в генераторах смешанного возбуждения основная часть МДС возбуждения создается параллельной обмоткой. Генераторы параллельного, последовательного и смешанного возбуждения иногда называют соответственно генераторами шунтового, сериесного и компаундного возбуждения.

Читайте также: Генератор для мерседес 814

Согласно ГОСТ 183-74 для машин постоянного тока принято следующее обозначение выводов обмоток: обмотки якоря Я1-Я2, параллельной обмотки возбуждения Ш1Ш2, последовательной обмотки возбуждения С1С2, обмотки дополнительных полюсов Д1Д2, компенсационной обмотки К1-К2. Цифра 1 обозначает начало, а 2 — конец обмотки.

Классификация генераторов по способу возбуждения

В зависимости от способа возбуждения основного магнитного поля машины различают генераторы с независимым, параллельным, последовательным и смешанным возбуждением.

Генератор, обмотка возбуждения которого получает питание от постороннего источника тока (например, от аккумуляторной батареи или от другого генератора постоянного тока), называется генератором с независимым возбуждением (рис. 5-41,а).

Генератор с параллельным возбуждением имеет обмотку возбуждения, подключенную параллельно к якорю (рис. 5-41,б). В генераторе последовательного возбуждения обмотка возбуждения соединена последовательно с якорем (рис. 5-41,в).

В генераторе со смешанным возбуждением на главных полюсах помещаются две обмотки: одна из них соединяется параллельно, другая — последовательно с якорем (рис. 5-41,г).

Рис. 5-41. Генераторы постоянного тока.

По параллельной обмотке возбуждения проходит небольшой ток, составляющий 1—5% номинального тока якоря. Она выполняется обычно с большим числом витков из проводника относительно небольшого сечения. По последовательной обмотке возбуждения проходит полный ток якоря, поэтому она выполняется с небольшим числом витков из проводника относительного большого сечения.

Генераторы малой мощности выполняются иногда с постоянными магнитами; их можно назвать магнито-электрическими. По свойствам они приближаются к генераторам с независимым возбуждением.

На щитке машины указываются номинальные величины: мощность (электрическая мощность на зажимах для генератора или мощность на валу для двигателя в ваттах или киловаттах), напряжение, ток, скорость вращения.

А) Классификация генераторов по способу возбуждения.

В зависимости от способа возбуждения основного магнитного поля машины различают генераторы с независимым, параллельным, последовательным и смешанным возбуждением.

Читайте также: Дизельный генератор 1987 года

Генератор, обмотка возбуждения которого получает питание от постороннего источника тока (например, от аккумуляторной батареи или от другого генератора постоянного тока), называется генератором с независимым возбуждением (рис. 5-41,а).

Генератор с параллельным возбуждением имеет обмотку возбуждения, подключенную параллельно к якорю (рис. 5-41,б). В генераторе последовательного возбуждения обмотка возбуждения соединена последовательно с якорем (рис. 5-41,в).

В генераторе со смешанным возбуждением на главных полюсах помещаются две обмотки: одна из них соединяется параллельно, другая — последовательно с якорем (рис. 5-41,г).

Рис. 5-41. Генераторы постоянного тока.

По параллельной обмотке возбуждения проходит небольшой ток, составляющий 1—5% номинального тока якоря. Она выполняется обычно с большим числом витков из проводника относительно небольшого сечения. По последовательной обмотке возбуждения проходит полный ток якоря, поэтому она выполняется с небольшим числом витков из проводника относительного большого сечения.

Генераторы малой мощности выполняются иногда с постоянными магнитами; их можно назвать магнито-электрическими. По свойствам они приближаются к генераторам с независимым возбуждением.

На щитке машины указываются номинальные величины: мощность (электрическая мощность на зажимах для генератора или мощность на валу для двигателя в ваттах или киловаттах), напряжение, ток, скорость вращения.

Дата добавления: 2015-06-12 ; просмотров: 2098 ; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

38 Генераторы с внешним возбуждением

Генератор (от лат. – производитель) – устройство, преобразующее энергию источника питания в энергию электрических колебаний требуемой формы, частоты и мощности.

7.1 Классификация генераторов

1) По способу возбуждения различают генераторы с внешним возбуждением (ГВВ) и автогенераторы (АГ).

2) По форме генерируемых колебаний различают АГ гармонических и негармонических (релаксационных или импульсных) колебаний.

3) По частоте генерируемых колебаний различают инфранизкочастотные (менее 10 Гц), низкочастотные (от 10 Гц до 100 кГц), высокочастотные (от 100 кГц до 100 МГц) и сверхвысокочастотные (свыше 100 МГц) генераторы.

Читайте также: Неисправности генератора ваз 2107 с инжектором

4) По выходной мощности различают маломощные (менее 1 Вт), средней мощности (ниже 100 Вт) и мощные (свыше 100 Вт) генераторы.

6) По виду частотно-избирательной цепи различают генераторы -,— и-типа.

9) По способу подключения нагрузки (по числу точек, в которых колебательный контур соединен с активным элементом) различают двухточечные и трехточечные генераторы.

Использование ГВВ для умножения частоты

Умножение частоты – получение из гармонического колебания с частотой другого гармонического колебания с частотой, где— целое положительное число.

Умножение частоты включает две операции:

1) Формирование из исходного гармонического колебания колебания сложной формы. Выполняется при помощи НЭ.

2) Выделение из спектра частот полученного колебания нужной гармоники. Выполняется с помощью фильтра.

Умножение частоты технически реализуется тремя способами: методом отсечки, импульсным методом и радиоимпульсным методом.

— высокодобротные колебательные контуры, настроенные на частоту входного гармонического колебания и частоту выделяемой гармоники. При уверенности, что на входе – гармоническое колебание, контурможет отсутствовать;

— НЭ;

— источник коллекторного питания;

— источник напряжения смещения. Обеспечивает требуемое положение рабочей точки (РТ) на проходной характеристике .

,

где — постоянная составляющая выходного тока;

— амплитуда -ой гармоники выходного тока;

— амплитуда импульсов выходного тока;

— крутизна ВАХ;

— угол отсечки;

— оптимальный угол отсечки – угол, при котором нужная (-ая) гармоника выходного тока имеет максимальную амплитуду.

7.4 Импульсный метод

Ф – формирователь коротких прямоугольных импульсов ();

7.5 Радиоимпульсный метод

Рисунок 7.4 – Структурная схема умножителя частоты:

Г1 – импульсный генератор. Управляет (манипулирует) Г2;

Г2 – генератор, формирующий радиоимпульсы с прямоугольной огибающей.

Чтобы гармоника нужной частоты имела наибольшую амплитуду, нужно выполнить условие:

,

  • Свежие записи
    • Как я ремонтировала свой автомобиль
    • Автомобильные зеркала
    • Ностальгия по «бугатти»
    • Тест драйв. OPEL MOKKA – лучший полноприводный кроссовер в своем классе
    • McFarlan — от рассвета до заката
    • Правообладателям
    • Политика конфиденциальности

    Записки Автомастера © 2023
    Информация, опубликованная на сайте, носит исключительно ознакомительный характер


    источники:

    https://dmsht.ru/11-klassifikatsiya-generatorov-po-sposobu-vozbuzhdeniya-osobennosti-etih-generatorov